Utah Lake Water Quality Study Funding Request

August 24, 2016

Scott Daly Division of Water Quality Utah Department of Environmental Quality

Introduction

The Division is conducting a water quality study on Utah Lake to:

- Evaluate the role of excess nutrients on beneficial use impairments
- Identify appropriate in-lake nutrient endpoints

Driving Factors

- Continuation of previous studies
- Additional nutrient related 303(d) impairments
- Recent HAB events
- Regulatory certainty

Hardship Grant funding is requested to assist the Division in obtaining contractual assistance to complete Phase 2 tasks.

Implementation

Industry

Permit Limits

Stakeholder Involvement (Task 1)

Utah Lake Water Quality Stakeholder Group

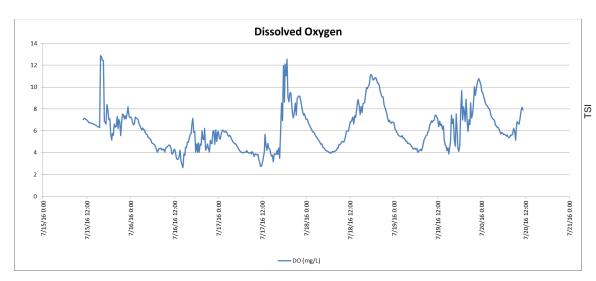
Tiered from Utah Lake Commission TAC

- 80 representatives:
 - Local municipalities and Utilities
 - POTW's
 - Local Universities
 - Private Consulting
 - Advocacy Groups
 - State, local and federal government

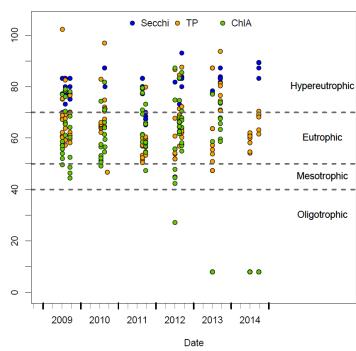
Water Quality Subgroups

- Data and Information Management (Task 2)
- Beneficial Use Assessment (Task 3)
- Load Analysis (Task 4)
- Model Selection and Development (Task 5)

Project Status: Data and information management (Task 2)


Coordination of ongoing monitoring activities

Data compilation and database development


Data analysis

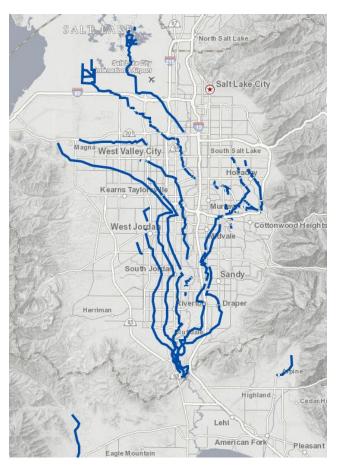
Data gap identification

Literature Review

Utah Lake pooled TSI samples

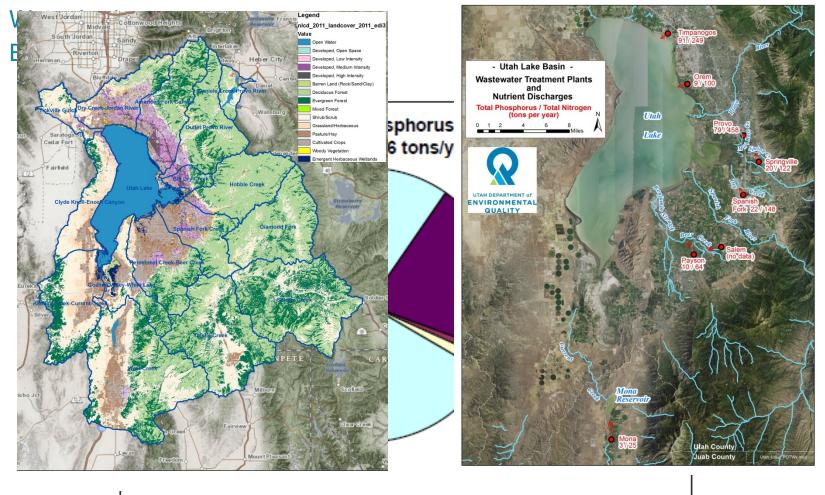
Project Status: Beneficial Use Assessment (Task 3)

2016 Integrated Report


New listings for harmful algae, ammonia, and pH

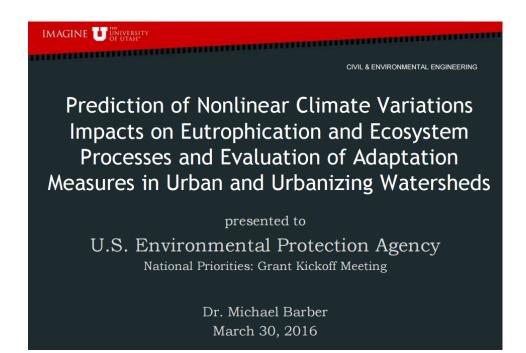
Evaluate existing use classes

Recreation, aquatic life, and secondary water use


Utah Lake State Park

Salt Lake County Canals fed by Utah Lake

Project Status: Source and nutrient load analysis (Task 4)

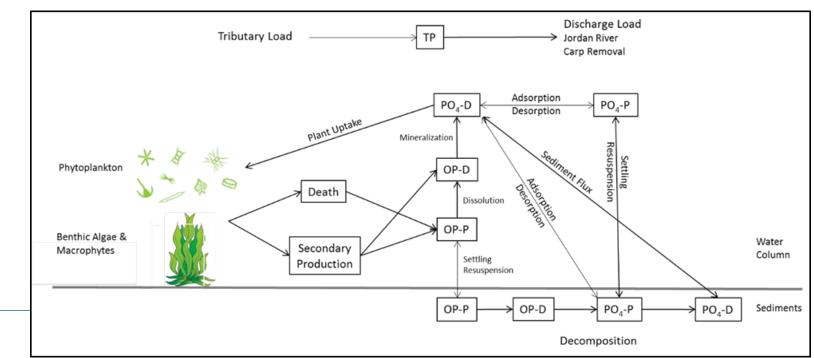

Project Status: Model Selection and Development (Task 5) Model Name W Spatial Dimension 11 Stratification

Model Selection

WASP

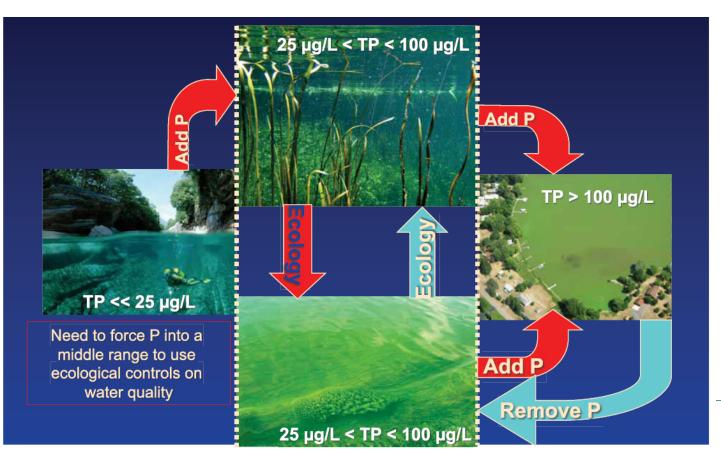
Model Development:

Collaboration with U of U

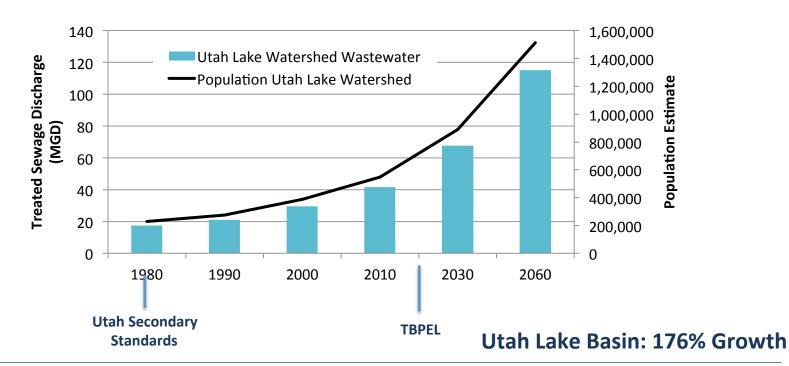


Model Name	WASP	CAEDYM	PCLAKE	CE-QUAL-W2
Spatial Dimension	1D-H	1D-V	0D	2D-V
Stratification	-	+	-	+
Inorganic Sediment Groups	3	2	1	>3
Littoral Zone	-	+	+	-
Phytoplankton Groups	3	7	3	>3
Zooplankton Groups	1	5	1	>3
Benthic Algae Groups	1	4	1	>3
Macrophyte Groups	+	1	1	>3
Macroinvertebrate Groups	0	3	1	0
Fish Groups	0	3	3	0
Bird Groups	0	0	0	0
Hydrodynamics	+	+	±	+
Temperature Dynamics	+	+	+	+
Oxygen Dynamics	+	+	+	+
Inorganic Carbon (CO2/DIC) Dynamics	+	+	-	+
Organic Carbon (DOC/POC) Dynamics	+	+	+	+
Microbial Dynamics	+	+	±	+
Internal Phosphorus Dynamics	+	+	+	+
Phosphorus Sorption to Sediment	±	+	±	±
Internal Nitrogen Dynamics	+	+	+	+
Internal Silica Dynamics	+	+	±	+
Sedimentation/Resuspension	±	+	±	±
Sediment Diagenesis	+	+	±	+
Fisheries Management	-	±	+	-
Dredging	-	-	+	-
Mowing	-	-	+	-
Ice Cover	+	-	-	+
Clear-Turbid State Transition	-	±	+	±

Nutrient Dynamics


- What is the role of internal lake processes on nutrient cycling and bioavailability?
 - Nutrient cycling
 - Nutrient mineralization
 - Food web dynamics
 - Legacy loading from lake-bed sediments
 - Lag-time response

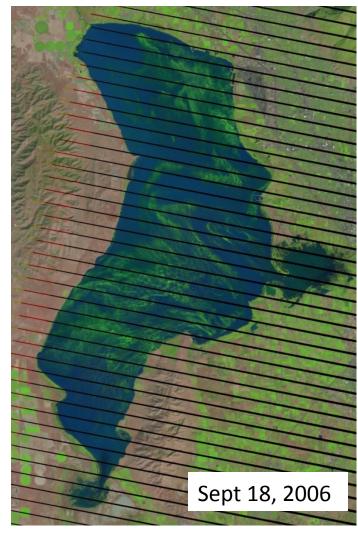
Ecological Influence


- What is the ecological influence on water quality conditions in Utah Lake?
 - Carp, nutrient cycling, and restoration potential
 - Turbid vs. clear water stable state
 - Historical shifts in ecological conditions

Source: David Austin, P.E., Senior Ecologist – ESA, CLM – NALMS Global Technology Lead – Natural Treatment Systems, CH2M Hill

Loading Characteristics

- What are the characteristics of nutrient loading to Utah Lake?
 - Origin, timing, and magnitude
 - Population growth and urbanization
 - Tributary nutrient cycling



Beneficial Use Classification

- What is the desired condition for recreational users?
- Do recreationists change behavior based on water quality conditions?

Harmful Algal Blooms (HABs)

- Can HABs be predicted in Utah Lake?
 - Linkage to nutrients
 - Use of satellite imagery and water chemistry for HAB early warning
- What are the economic and social costs of HABS in Utah Lake?
- What are potential treatment options for HAB events in Utah Lake?

Estimated Phase 2 Budget

Study Category	Amount
Lake Ecology	\$150,000 - \$250,000
Internal Nutrient Processes	\$150,000 - \$250,000
Nutrient Loading	\$150,000 - \$250,000
Beneficial Use Classification	\$50,000 - \$150,000
HAB Prediction	\$50,000 - \$150,000
Economic Impacts Analysis	\$50,000 - \$100,000
HAB Treatment Option Investigation	\$15,000 - \$35,000
TMDL/Site Specific Standard Development	\$50,000 - \$150,000
Total	\$1,000,000

